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ABSTRACT
Our aim in this article is to present some results concerning the inter-
action of small and large eddies in two dimensional turbulent flows. We show
that the amplitude of small structures decays exponentially to a small value
and we infer from this a simplified interaction law of small and large
eddies. Beside their intrinsic interest for the understanding of the physics
of turbulence, these results lead to new numerical schemes which will be

studied in a separate work.
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INTRODUCTION

The conventional theory of turbulence in space dimension three implies
the existence of a length 14 which is small in comparison with the macro-
scopical length 10 connected to the geometry, and which is such that the
eddies of size less than 1y are damped by the effect of viscosity and become
rapidly small in amplitude; the length 14 is called the Kolmogorov dissipa-
tion length [8]. 1In space dimension two the situation is similar, but 14 is
replaced by the larger length 1X introduced by Kraichnan [9]. It is one
of our aims in this article to derive directly from the Navier—-Stokes equa-
tions and without any phenomenological consideration a mathematically rigorous
proof of this property: the exponential decay of the small eddies toward a
small value. Note however that the cut-off size between small and large
eddies is much smaller than 1x or even 1;, and this is due in part to the
high level of generality allowed here where singular flows can be considered
such as those generated by flows in nonsmooth cavities, like the flow in a
rectangular cavity. A physical discussion on the necessary cut—off length is
presented hereafter.

Our approach is the following one: the Navier—-Stokes equations of two

dimensional viscous uncompressible flows are written as

du = =
(0.1) 3¢ ~ VAu + (ue Nu—Vw=1f in QxR
(0.2) Veu=0 in Q x R+
where u = u(x,t) = {uj, up} is the velocity vector, w = wix,t) is the

pressure, f represents volume forces, v > 0 1is the kinematic viscosity. As



usual (0.1)(0.2) are supplemented by boundary conditions which could be for

instance

(0.3a) u=0 on 23R

or

(0.3b) u e+ v =0, yxcurlu = 0 on 23Q, V the unit outward normal on 23Q,
or

(0.3c) g = (O,Ll)x(o,Lz) and u, w are periodic of period L; in the

direction x4, 1 = 1,2.

Our emphasis here will be on the space periodic case (0.3c), but the
other boundary conditions will be considered as well, 1In all cases (0.1) -
(0.3) reduces to an abstract evolution equation for u 1in an appropriate
Hilbert space H:

(0.4) du v Au + B(u) = f.

dt
The operator A 1linear, self-adjoint unbounded positive in H with domain
D(A) C H, is the Stokes operator. Since A~! 1is compact self adjoint, A
possesses a complete family of eigenvectors w: which is orthonormal in H

]

Aw, = A,w = 1’2’0n-

(0.5)




0 < Al S_AZ,---, A, +® as j+ oo ,
Of course in the space periodic case (0.3c) the wy are directly related to
the appropriate sin and cos functions of the Fourier series expansion (see
[12]). The operator B is a quadratic operator; B(u) = B(u,u), where
B(e,e) is a bilinear compact operator from D(A) into H.

For fixed m we denote by P = Pm the projector in H onto the space

spanned by Wpst oW, and we write Q = Qn =1 - Ppe We set

u=p+gq,p=Pu, q=0Qu,

and we show that, after a transient period, and for various norms, p is
comparable to u, and q 1is small in comparison with p and u (see Sec. 1l).
We then project equation (0.4) on PH and QH; this yields a coupled

system of equations for p and gq:

(0.6) %E+ vAp + PB(p + q) = Pf
(0.7) '3%* vAq + QB(p + q) = Qf.

Since q 1is small in comparison with p one can speculate that B(q,q) =
B(q) 1is small in comparison with B(p,q) and B(q,p) and that these quanti-
ties are small in comparison with B(p,p) = B(p). Also the relaxation time

for the linear part of (0.7) of the order of (va )_1 is much smaller

m+l
than that of (0.6) which is of order (vAl)_l. This suggests that an

acceptable approximation to (0.7) is given by




(0.8) vAq + QB(p) = Qf.

This leads us to introduce in H the finite dimensional manifold MO with

equation

q = 0,(p) = (&) (Qf - QB(p))
(0.9)

p = Pu, q = Qu.

It is one of our aims to justify this approximation: for large times, i.e.,

after a sufficiently long transient period, the ratio of q to u 1is of the

A
order of X—i— for large m, whereas the distance of q to MO, (compared
ol A 3/2
to a quantity of the order of u), is of the order of (i——_) for .
m+1

large m. The proof of this result appears in Sec. 2. Hence, for large time,
an orbit u(t) = p(t) + q(t) corresponding to any solution of (0.4) becomes
closer to MO than to the linear space q = 0. We intend in a subsequent
work to construct a whole family of explicitly defined manifolds Mj provid-
ing better and better approximations to the orbits as j increases(l), The

manifold My (as well as the future manifolds Mj) plays the role of

approximate inertial manifolds to the two dimensional Navier—-Stokes equations

and constitutes a substitute to them in situations where we cannot prove the
existence of such manifolds.
In Sec. 3 we recall and improve significantly a result in [7]: this

leads us to introduce a Lipschitz manifold ) of finite dimension like Mg»

(l)C. Foias, 0. Manley, and R. Temam, Article in preparation.
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to which all the orbits of (0.4) remain eventually at a distance less than
exp(-c xl/xm+1). Hence z provides a much better approximation than M-.
but, on the contrary, the proof of existence is nonconstructive and does not
provide an explicit expression like (0.9). It provides nevertheless an in-
teresting complementary aspect. Let us mention also that another type of
approximate manifold containing all the stationary solutions has been exhibit-
ed by E. Titi(l),

This article ends with an Appendix providing a technical but totally new
method of estimating certain norms of the solutions of an evolution equation
like (0.4): taking advantage of the analyticity in time of the solutions, we
estimate the domain of analyticity in the complex time plan and using Cauchy”s
formula, we readily deduce estimates on the derivatives dku/dtk from the
estimates on u 1in the domain of analyticity; these estimates on the time
derivatives of u are much sharper than those obtained by real variable
methods.

The results presented here were announced in [0]. We intend in a subse-
quent work to derive approximate manifolds of higher order than My and to

study the three dimensional case.

1. FAST DECAY OF SMALL EDDIES
In Secs. 1.1 and 1.2 we briefly recall the functional setting of the
Navier-Stokes equations and some useful estimates. Then in Sec. 1.3 we derive

the estimates on the magnitude of the small eddies.

(l)E. Titi, Article in preparation.



l.1 Preliminaries

As we recalled in the Introduction, the Navier-Stokes equations
(0.1)(0.2) associated to one of the boundary conditions (0.3) is equivalent to

an evolution equation

(1.1) du | LAu + B(u) = f
dt
in an appropriate Hilbert space H. Here feH v>0, A 1is a linear

self-adjoint positive operator with domain D(A) C H, and whose inverse A-1
is compact; we have B(u) = B(u,u) where B(s,*) is a bilinear compact
operator from D(A) (endowed with the norm IA-I) into H; H 1is a Hilbert
subspace of LZ(Q)Z. Its norm and scalar product are denoted [e ], Coye)
as those of LZ(Q)2 or LZ(Q); for the details see [11][12].

We recall that for Uy given in H the initial value problen

(1.1)(1.2):

(1.2) u(0) = Uy

possesses a unique solution u defined for all t > 0 and such that
(1.3) ue C(R;H)M L2(0,T;V), ¥T > 0;

here V = D(Al/2Z) and the nomm |A1/2-| = jek on V 1is equivalent to the

L2 norm of grad u. If ug € V  then

(1.4) ue C(R;v)MLZ(0,T;D(A)), ¥T > 0.




e

In both cases (uo e H or V), u(e) is analytic in t with values in
D(A); the domain of analyticity of u in the complex plane Ct comprises a
band around R, and is described in more details in the Appendix.

It is useful here to reproduce some a priori estimates verified by the
solutions u of (1l.1)(1l.2). Before that we recall some inequalities (contin—

uity properties) concerning B (see [7]): for every u, v, w e D(A):

|u|1/2 ﬂul1/2 uvul/z |Av |
(1.5) |B(u,v) | ¢

ul/2 |Au|1/2 Il vi
(1.6) [ (BCu,v),w)]| < |u|1/2 a2 g |w|1/2,

where «¢;, ¢y 1like the quantities i ci, which will appear subsequently,

are dimensionless constraints(l). Also we recall from [(11[3] the inequality

2
< ey 1od (1 + log lé&liﬂ, ¥ ¢ D(A),

(1.7) o] o
L () INTY!

from which we deduce that
IB(u,v)I S_I(u~V)v|.S

and using (1.7)

(I)These constants can be absolute constants or they may depend on the shape
of Q: by this we mean that they are invariant by translation or homothety
of Q.
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2.1/2
ful Uvi (1 + log —Lé‘il—)

2
Alllull

(1.8) |BCu,v)| < ¢ .
e, 143/2,|2.172

lu] |Av] (1 + log —
xllAvl

1.2 Behavior of Small Eddies

As mentioned in the Introduction we fix an integer me N and denote

by P = Pj the projector in H onto the space spanned by the first m

eigenvectors of A, Wyseee,w 3 e set also Q =Q =1 - P, and for the

sake of simplicity
(1.9) A=A, A =2

We write p =Pu, q = Qu; p represents a superposition of "large eddies" of

size larger than A;I/z

-1/2
m+l

and QA = AQ:

, and q represents "small eddies" of size smaller

than A . By projecting (1.1) on PH and QH we find since PA = AP

(1.10) .g_g+vAp+pB<p+ q) = Pf
(1.11) L;%+ vAq + QB(p + q) = Qf.

We take the scalar product of (1.10) with q in H:

(1.12) 34 la]? +vigr? = (af,@) - (B + @), D).

Thanks to the orthogonality property




(1.13) (B(¢ ,lp),ll)) =0, ¥, v eV,
the right hand side of (l.11) reduces to
(af ,q) - (B(P,P),Q) - (8(q,p),q).

Using (1.6) and Schwarz inequality we majorize it by

2 1/2
2 A
log| la| + c;tpn” [q| (1 + 1log _|__P_|_2_) + ¢, lal nqr ups

A bpl

£ (since lIpl < Kul)

2 1/2
lag] la] + ¢, tpr” la| (1 + log J-A;p-l—z) + cZA-l/znqnzuuu,
A, ipl
1

I

We denote now by My (resp. M;, M) a bound of lu]  (resp. yur, |Aul]),

the interval of time I = (t0 «) under consideration
14

(1.14) Mo = Suplu(s)l, M1 = Suplu(s)l, M2 = SuplAu(s)I;
sel sel sel

we observe that

|Ap|2 <A leII2 = Anpu2

and set

m+1
A ).

(1.15) L =(1+ log

We obtain

on
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d g2 -1/2 2 2.1/2
(16) L gl + (v - epp uy van? < Jof] gl + ¢, M2L/2)q

Hence, assuming that ¢y Anl/zM1 Lv, i.e.,
2(:21*‘11 2
(1.17) A1 = A 2 (——)
(1.16) yields
L lqlz gl “q“z < A'l/z(lel + (4M2 Ll/z) i ql
dt 2 = 1
v 2 .1 2 2.4
K lgl” + = (Jaf|” + (c,M,L)
d 2 2 1 2 2.4
(1.18) i lq]“ + viql <% (]Qf|© + c, ML)
d 2 2,1 2 2,4
(1.19) I lq]© + vA]q] <5E (lof|“ + c ML),

We infer easily from (1.19) that for t > tys tys tE 1:
(1.20) (q(t)(2 < lq(t )[zesp(-'vA(t - t)) + —— ({Qﬂz + Ay,
- 1 1 vaZ 471

Before interpreting this inequality, we derive a similar inequality for the

(41) V norm. Taking the scalar product of (1.11) with Aq in H we find

2

%%E 1qr? + v [aq]® = (af,AQ) - (B(p + @), Aq).

We expand and use Schwarz inequality and (1.6) — (1.8) to majorize the right
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hand side of this equation by

lof | |Aq] + czllpIILl/zlAql(llpll + liqh)

1/2 3/2

+ ¢, lal™" " |aq| T “Cupr + ngn)

£ (with Young”s inequality)

™M.L cs
v 2 .1 2 . %11 2 .24
<5 laq]® + o fof]” + — +;—§M(2)M1.
Thus,
4 2.4
ML MM
d 2 2, .1 2 .1 0'1
(1.21) T v |Aq| $_c3(3-|Qf| + — 4+ 3 )
4 2, 4
ML MM
d 2 2, 1 2 .1 0'1
(1.22) 35 ai® + vAiql 5c3(; lof|® + ——+ 5

and we conclude that

1aCen? < 1qle 1 %exp(-vACE = £)))

(1.23)

4 2,4

c3 M MM

3,1 2 1 01
tox Gt + 5oL =5

In (1.20) and (1.23) we can bound |q(t1|2 and Hq(tl)ﬂz by M% and M%
respectively. Then after a time depending only on My (or Ml)’ v and

A =2 the term involving t becomes negligible and we obtain

m+l’
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laCe) |2 5;%17 (lag]® + duiwy,

(1.24)

2¢?
2
bq(en? _<_——3— (lag|© + MIIL + 021)
AY]

-
<

for t large. Alternatively, denoting by Ky Kys K;, some quantities

which depend only on the data v, f, @, and My, M;, My, we rewrite (1.24)

as

2

(1.25) Iq(t)l2 <k L8%, nqCe)n? <k L§ for t large,

A A A
_1r 71 - m+1
§ = T L=1+ log ;Y .

A+l 1

Using also the results in the Appendix we conclude the following

Theorem l.1: We assume that m is sufficiently large so that (1.17)

holds. Then for any orbit of (1.1), after a time t; which depends only on

the initial value u(0) = uy, the small eddies component of wu,q = Quus is

small in the following sense

lq(e) | SKOLI/ZG, hq(e) SKILI/ZGI/Z
(1.26) la"(e) < xzLt/%
|aq(t) | < K2L1/2, t > ty.

The first two inequalities in (1.26) follow from (1.25); the third one follows
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from (1.25) and the analog of (A.15) for gq (1), The fourth inequality is

obtained by writing

vAqQ = Qf - q” - QB(p + q)
1 1 . 1
|aq} <5 lafl + < la”| + 5 [QB(p + @)
and utilizing (1.5), (1.6), (1.8).
In Sec. 1.3 hereafter we intend to provide a more explicit form of the

constants K in the case of space periodic flows.

1.3 The Space Periodic Case

We first review the well-known a priori estimates on the solutions of

(1.1). This will yield more explicit expressions for Mgy, Mp, Ms.
We take the scalar product of (l.1) with u in H; using the ortho-

gonality property (1.13) we obtain

]
-~
h
-
[
o’
I
n
c

l1d 2 2
E'EE'IUI + viul

| A
>

(1.26) %? |u|2 + viul

(I)Note that q is analytic in the same region of the complex plan as u.
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Theorem 2.1: For t sufficiently large, t > t,, any orbit of (1.1)

remains at a distance in H of PmH of the order of KLl/ZG and at a

3/2

distance in H of MO of the order of K 1§ . In the norm of V, the

1/2L1/2

corresponding distances are of order «§ and «L§; the constants

K depend on the data v, Al, lfl, and ty depends on these quantities

and on Rp, when  [u(0)| < R,

3. A NONCONSTRUCTIVE RESULT

Our aim in this last section is to exhibit a manifold Y which 1is
Lipschitz, has finite dimension, and captures the solutions of (l.1) in a much
narrower neighborhood than Mg does. However, the existence of y is.
proved in a nonconstructive way, by opposition with the very simple and ex-
plicit equation (2.2) available for Mgy. Secs. 3.1 and 3.2 provide prelimi-

nary results and Sec. 3.3 contains the main one.

3.1 Quotient of Norms

We consider two solutions u, v of (l.1) and set w=u - Vv

du = =
(3'1) -d—t-“' v Au + B(U.) f, U(O) 1.10,
(3.2) g—‘t’+ v Av + B(v) = £,  v(0) = v,
(3.3) %%- + v Aw + B(u,w) + B(w,v) = 0O,

Let o denote the quotient of norms |wn2/lw|2; then
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do _ 2((w",w) _ 2wl

o we)? ] *

(w",w) = 2 5 (v ,Aw - ow)
||

= - _‘2_;]_2. (vAw + B(u',w) + B(w,v), Aw - aw).

Since (Aw, Aw - ow) = |Aw - ow|2, we conclude, using (1.5), that
do 2v 2
—_+ - =
Tt |w|2 |Aw - ow|
2
= - | |2 (B(u,w) + B(w,v), Aw - ow)
w

< I2|2 |av - ow| (|BCu,)| + [BCw,v)|)
w
2 ¢ 2 1/2 1/2 1/2 1/2
< ' |2 |Aw = ow|® (|u] |Aul| Iwih + |w |Aw| tvi)
w
2
2¢
S"'y_f |Aw - ow|2 + —;—l (Iul |Au| + vl IAVIAI”Z)O.
w
Hence
do A 2
(3.4) -d—t+ _|—T2- IAw owl < po
where
2
2
(3.5) p=p_ +p., pu=—-;:71—2—nuu |Au| .
u v v>‘1

By integration of the differential inequality o~ {p o, we find that for

t1<t<'t<tl+T
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2 2 T
(3.6) llw('r)ll2 5.“W(t)"2 exp(f 0(s)ds).
[w(t) | [w(t)] t

Now we estimate the integral of p in terms of the data; as in (1.16)

we assume that on the interval of time under consideration
(3.7) RES] S_Ml, iv(t)l S.Ml.

With an appropriate value of M; (3.7) will be valid on some finite interval
of time [0,T], or on some interval of time (to,w), once the orbits have
entered the absorbing set.

We have

T

2c1 T
[ e, ds 5-‘"T7§'f lul |Aul|ds
t vkl t

2
2¢c T
1 1/2 2,.1/2
S-—T7§-M1(T - t) (f |Au| dS) .
vxl t

An estimate on Au 1is obtained by taking the scalar product of (3.1) with

Au in H:

%E-Hunz + v |Au|2 = =2(B(u) ,Au) - 2(f,Au)

< 2|B(uw)| |Au| + 2|£| |Au]

< (with (1.5))

1/2

< ey JulM? v [aa]M? 4 22| (A



———r——— ——— =

=25~

rd

c

2 1 2 4 2 2
< v |Au| +v—3|u| hut " + = [£]
d 2 2 01 2. 1 .6
(3.8) LA R < | £] + —— M.
v Al
Thus,
t1+T Ilu(tl)ll2 T 2 ci 6
/ |Au|“ds < +— (1£]° + — M)
t v vV A
1 1
t 1 2
1 M cTT
(3.9) f |auf2as ¢ L4 TIELT L L 6
=y 2 4 1
t \ v A
1 1
and
T 1 1/2
{ puds 5.7 (t = t) Kq
(3.10) .- y s b 1/2
S 2 ( L o 4 I )
3= 1771 \§ ) A .
vll v Al

Since the estimates on v and p, are the same, we have

T
(3.11) f p ds { (1t - t)1/2K3-
t

3.2 The squeezing property

The squeezing property is an important property of the solutions of the
Navier—Stokes equations which has been introduced in [6]. A stronger form of
it, called the strong squeezing property or the cone property was proven in
[4] for some other, more strongly dissipative equations. For the two dimen-

sional Navier-Stokes equations, we derive here a form of the squeezing proper—

ty sharper than in ([6].
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We take the scalar product of (3.3) with w in H and thanks to (1.13),
(1.16) we find
%? |w|2 + 2v"wﬂ2 = -2b(w, v, W)
_<_2c2|w| nwh Hvi
C2
g_vuwu2 +-;3 |w|2 Tk
c2
< vnwnz + 2 2 lez
- v 1
c2
d 2 lwil 2,2 2
(3.12) aT_—- IWI +(U—|Z-TM1)| I SO.
w

We consider tp, t, 0 <t <ty KT

and write, using (3.6)(3.11)

2
NHw(t )l 2
(3.13) Yo = -——-ll—jf_s exp(K3(t0 - t)l/z) lﬂ&Ellf .
w(ty) | w0 |
Thus,
/ 2
d 2 1/2 2 2
(3.14) S W%+ g explory £g'%) = 2Dy Ju|® <0
and by integration
2 2 1/2 c% 2
(3.15) |w(t0)| < |w(0) | exp(—vyotoexp(—K3t0 ) + 5_'M1t0)'
Now if IQmw(tO)l > Ime(tO)I, we write




-———— — —— ——— - —— ~ ——
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||me(t:0)n2 + IIQmw(tO)II2

YA =
0 2 2
Ime(to)l + IQmw(to)l
2
“Qmw(to)ﬂ Am+1
2- 2 - 2
2|Qmw(t0)|
and
[w(t )|2 < |w(0)|2ex (~vA_ &ty +x,t.)
o/t = PLVA M1 5% T %40
(3.16) Cz
2 .2 1 1/2
Ky =5 Ml’ Ke = 7'eXp(—K3t0/ ).

Of course the interval (O,to) can be replaced by any interval (t1 » £ + to)

on which the bound (3.7) is valid.

In conclusion (this is the squeezing property), whenever (3.7) is valid

on some 1interval (tl, ty + to), then w = u - v satisfies one of the

following conditions:

(3.17a) |Qmw(t0 + tl)l < |me(t0 + tl)l

or

(3.17b) lw(t, + t )|2 < w(e )!2 exp(-vA__ .k .t +Kk,).
0 1 - 1 ml1" 570 4

Since Kys Ks are independent of m, the exponential term in (3.17b) can be

made arbitrarily small by choosing mn sufficiently large; we will take advan—
tage of this remark in Sec. 3.3.

Of slightly more explicit form of can be derived by using the

1/2
1 °

Ky» Kg
Grashof number G = lf[/vzx1 and the Reynolds type number R = M, /A

We find (1 = tO):



-28-

. 1/2 2 1/2
K3 = can(vk ) (R + tovle + tOvA R )
(3.18) €, = CRZ(VA )
* 4 n
1 . 1/2 2 1/2
Kg =5 e xp( (-c R (vA ) (R + tovAIG + tgVA, R ) ).

In the space periodic case we have seen that, for large times, we can take M;

= (2|f|G)1/2. Then Rn =y2 G and the above quantities become

e - 1/2 4 1/2
Kq = c3(vk ) (G + tovle + tovx G )
- 2 2
(3.19) Ky = 2c2(vA1)G
_1 . 1/2 4 1/2
Kg = 2 exp( c3(vxlt0) (G + tovle + tovk G ) ).

3.3 The Approximate Manifold

We denote by S(t), t > 0 the operator in H: uy * u(t), where wu(e)

is the unique solution of (l.1) satisfying u(0) = ug. The operators S(t),

t > 0, form a semigroup in H.

The squeezing property tells us that if  u(.), v(0) are two solutions
of (1l.1)) 1ying in the ball {$p € v, ¢l S_Ml}, for 0<t<T, then at

each time te [0,T] and for every m ¢ IN we have either

lo, (s(t)uy - 8CeIvp)| < [B_(S(t)uy - S(E)v) ]

or
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1
IS(t)u0 S(t)v0| S_Iuo - v0| exp 5 (—VA_, Koty +K,t0)

K5 as above.

Now we choose ty e [0,T], me N and consider a subset ) =) (m) of

4?

S(to) {uo e V, uuon S_MI}
which is maximal under the property
m — ''m

By this we mean that if wue ) (m) then
{ve V, v satisfies (3.20)} z (m).

The existence of such a maximal set is easy.
We then apply the squeezing property: whenever nTu(s) S_Ml, we see

that S(tglu(s) = u(tg + s) either belongs to § (m), {i.e.,
lo_(s(ty) u(s) - s(r)e)| < [P (SCt)uls) = S(t)e)],

for some ¢ € V  such that H¢l < M, and S(t0)¢ e ) (m) or, if not,

then for every such ¢

I5Cegduls) = SCe)o |2 < lule) = ¢1% exp(=va_, sty + x,4t0)
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2
4M1

M

< exp(—vA_, k.t + k

15550 * K4tg) -

In all cases the distance of S(tg)u(s) to ] (m) 1is bounded by

2M1 t0
Wz— exp(z— (K4 - \)Am+1K5))o
1
We can choose to = (\))\1)_1 and the bound becomes
2M1 K5 km+1
7z SR
provided that 1
A 2k
(3.21) mL oy
A |

By translation in time (t + t - t,), we conclude that once the orbit u has
entered the absorbing set {14l S_Ml}, which happens for t 2ty = t*(RO)

(for [u(0)] < Ry), the distance of S(t)ug to )} (m) 1s bounded by a

given quantity E,

(3.22) dist, (S(t)uy, ] (m)) < E

provided t > t, + (vkl)_l, and

exp (—-EZ-T—tl)SE,
1
i.eo,
(3.23) 0 S
' 2R e E
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By definition the set z (m) enjoys the property that
'Qm(u - V)I.S |Pm(u - v, ¥u, ve Mm).
Hence, J (m) 1s the graph of a Lipschitz function
Ve PmX (m) » QH
|‘1’(Pmu) - ‘i’(va)I < lpmu - val, ¥Pu, Pv P Y (m).
By the Kirszbaum extension Theorem [16] ¥ can be extended as a Lipschitz

function (with the same constant) form P H into QpH, that we still denote.

by v¥. Now ¥ 1s defined from P H into QyH, and its graph is a

Lipschitz manifold above all of PmH.

In conclusion we have proved the following theorem

Theorem 3.1: If m 1is sufficiently large so that (3.21) is satisfied(1)

then there exists a Lipschitz manifold z (m) of dimension m, which enjoys

the following property: for an solution u(e) of (l.1), for t suffi-

ciently large (t > t**(Ro, v, £, 2), for luol S_RO), the distance in

H of u(t) to ] (m) 1is majorized by

2M1 K5 A
172 exp(~ 7= 5—
1

(1)<4’ ks as above with tg = (vkl)—l, and M, the radius of an absorbing
set in V’5 for (1.1).
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.APPENDIX

Estimates in the Complex Time Plane

It was proved in [6] (see also [12]) that the solutions to the Navier-
Stokes equations are analytic in time; we want to show how one can then use
Cauchy”s formula to get a priori estimates on the time derivatives of the so-
lutions. The main point in the proof is to determine the width of the band of
analyticity of the solution around the real axis R,; this will follow as
in [6,12] from a priori estimates on the solution in the complex plan.

The complex time 1is denoted g = seie; H ¥, DA are the

complexified spaces of H, V, D(A); A, B are extended as linear and bilinear

operators respectively from I(A) into M:

(A.l) A(ul + iuz) = Aul + 1AUZ,

(A.2) B(u; + iuy, vy + ivy) = B(uy,vy) = B(uy,vy)

+ i[B(uZ,VI) + B(ul,Vz)]

¥u = u, + iu2, v=v, + iv2 e IXA). The Navier—Stokes equation (1l.1)

becomes (u = u(zg)):

(A.3) %CB + vAu + B(u) = £

(A.4) u(0) = uge
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Assuming that ug V (or W), ullg e L (B3 ® and as in (1.14), we denote
by Mg, Mj, the supremum of [uCt)| and lu(t)t, te R. We take the

scalar product in M of (A.3) with Au; we multiply the resulting equation

by eie and take its real part. This yields
14d ig,, 2 i6,,2
- — + =
5 g5 hulse )i vcosd |Au(se )]
(A.5) = —Re e®(B(u),Au) - Re 19(f,A0)

< 1(B(w) ,an) ] + |£] [Auw

We expand by bilinearity (using (A.2)) and bound the resulting expressions

with the help of (1.8):

2 1/2
| (B(w),Au) | < cHunz(l + log Jf&LLjﬂ |Au

xlnun
Also
2
vecosd 2 | £]
Hence (with u = u(seie)):
{
{
(A.6) %E nat? + vcoselAulz.S
2 2 1/2
f 2 Au
ivloie + cg lul” [Au] (1 + log —I-——|-2-) .
Alnu“
We write z = -4%%1——-> 1 and consider the function
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A,vcosd
z+ ¢(z) = - -1—2— z2 + Cg ATV 1/2 z(l + logz )1/2
By elementary computations(l)
CZII ull 2 4c§ll ull 2
(A.7) $(2) < 55> log ( 5 ), for z > 1,
Alv cos 6
and (A.6) yields
d 2 vcose
I lul = + IA l
(4-8) c2 l;czllull2
< Ifl > ||u||4 (log > )
— vcosh 2vcose 2 2 ¢
Alv cos O
(1 + Ac ) 9
Setting y(s) = ————r (1£] + tu(sel®)n ) we infer from (A.8) that
A.,v cos ©

1

< c; Aivcose y2 log v,

where ci is an appropriate nondimensional constant. As long as

y(s) < 2y0 = 2y(0), we have

(I)Looking for the maximum of -a222 + 82(1 + log zz), we find

2
82(1 + log 2%) < a?2? + 3210g %
o

1/2 2

2
zB(1 + log zz) + Bz(log %)1/2
a
1 g2 2

2,18 B
£ 2az t 4. (log az).

S az

A.vcosd

We then choose q = -IT— , B = cslul)‘;/2
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- - 2
y~ £ e]r vcosby 10g(2y0)

Y0
y(s) 5.1 - ci Alvcoselogzzyo)s ?

and this is indeed 5.270 as long as s { T,

3

* 2ciA1vcos6y010g(2y0)

T

For ﬂuoﬂ < Ml’ we replace Tix by

= 3
(a.9) TxMp ) 7
G My G My
2¢SA veosd( + Jlog 2 ( + )
11 2 2 2 2 2 2
cos © Alv cos © cos © Alv cos 6
Thus
(A.10) ratse®® 2 < 2¢]£] + nut? < 2¢]£] + ud)
for
3cosb
0<sX 2 2

M G M

2 2
1 cos © Alv cos 0

and in particular for
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3cosb
(A.11) 08 ) 2
. 1 1
2c1}\ IV(G + -—-2-) + log 4(G + 2)
Alv Alv

when cosze Z-% .
Following the method developed in [6] we conclude that the solution

of (A.3) (or (l.a)) is analytic in the region

(A.12) A(uO) = {ge 6, s {a cos 8, cos 6§ > iz&
a = 3
M vy
2¢]A V(G + —=) + log 4(6 + —)
Alv Alv

which comprises the regions

|[Imz| <Reg, O0<Reg

I
[NYE<]

and

(A.13) lmg| <%, Rez>%.

At any point te R, t >a, We can apply Cauchy”s formula to the circle

T centered at t of radius «a/4:

k 1
(A.14) s u(i) - 1;1}1 u(cl)cﬂ g .
dt r (t-z)
Thus,
k
d u(t)
(A.15) Sup < —E'k' M,

t>a
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dku 4k
(A.16) Sup "'—E ()1 _S X k! M
tZg dt o

1.
Explicit values of My and M; were derived in (1.36) for the two

1/2

dimensional space periodic case: My = (2]£]6) 7" 7(t 2 ty). This yields

(assuming G > 1):

¢ = 23 2
2¢7A (G + 267)1og 4(C + 267)
3
(A.17) @ > ———
A,vG logG

1

and we deduce from (A.15), (A.16) that for t sufficiently large(l)

1/2
f k/2,.2 k
¢ J;%7f- (|f|A1) / (G 1logG)

1

|dku(t) '
aek

| A

(A.18)

k
ud 1;(:)“
dt

| A

c|f|1/2(lflxl)k/z(cz1ogc)k.
In particular (k = 1):

du(t 2
I-E%—ll_g c|f] 6“logG
(A.19)

udu(t)l
dt

i/z c%10g6, ¢t >T

I

c|£ir %°

This produces an interesting bound on IAu(t)| for t large:

(I)This means as In Theorem 1.1 and elsewhere t 2 Tu(Rg,v ,x1,|f|), for
IUOI SRO.
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VAu = f ~ B(u) - u~

c
|Au| _gé— [£] + 3-1 [ul”znuulAulll2

2

2 | 2 2, _
,A“’Sv—,f,*';j’ul hul™ + = u

¢ c<|f|x1)1/2(c1/2 PP 7

lauCe) | < e(lefx )1/ 263/ 21040,

+5 1w
|

logG)

for ¢t Z_T*.
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